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Envelope gating and noise shaping in populations of noisy neurons
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Narrowband signals have fast and slow time scales. The transmission of narrowband signal features on both
times cales, by spiking neurons, is demonstrated experimentally and theoretically. The interaction of the
narrowband input and the threshold nonlinearity may create out-of-band interference, hindering the transmis-
sion of signals in a low-frequency range. The resultant out-of-band signal is the “envelope,” or time-varying

modulation of the narrowband signal. The levels of noise and nonlinearity intrinsic to the neuron gate trans-
mission on the slow “envelope” time scale. When a narrowband and a distinct slow signal drive the neuron, the
slow signal may be poorly transmitted. Increasing intrinsic noise in an averaging network removes the enve-
lope in favor of the slow signal, paradoxically increasing the signal-to-noise ratio. These gating effects are

generic for threshold and excitable systems.
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Nonlinear dynamical systems driven by noise and har-
monic signals can display a wide range of interesting phe-
nomena. This is particularly the case for excitable and
threshold systems in, e.g., laser physics and biology [1-4]. In
physical systems, “harmonic” signals are often more of a
narrowband nature, with power over a significant bandwidth
(see Fig. 1). These have statistical properties intermediate to
those of harmonic signals and broadband noise. Narrowband
signals have at least two time scales: one related to a fast
oscillation, or carrier, and a longer one related to the slow
modulation, or envelope, of the carrier. Their effect has been
studied in bistable systems [5,6], charge density waves in
semiconductors [7] and in coupled Josephson junctions [8].
In the field of neuroscience, narrowband signals occur in
natural stimuli [9-11]; they can, along with other signals,
drive large-scale cortical activity [12,13]. A recent experi-
mental study has further revealed that sensory systems can
process the two time scales in parallel [11].

Rectification, which linearly transmits only one polarity
of an analog signal, is known to be sufficient for extracting
an envelope from a narrowband signal in physical systems
[14,15]. How is this possible in noisy spiking neurons? How
are the different time scales transmitted, and how does this
interfere with transmission of other slow signals? These is-
sues are the focus of this paper. We first demonstrate, using
experiments and theory, how the neuron spiking threshold is
key for generating a neural response at the envelope frequen-
cies. In the aforementioned context of processing natural
stimuli [9-11], this extraction is desirable, and noise is thus
generally detrimental. Alternately, the envelope power may
hamper the detection of other relevant low-frequency stimuli
because their frequency bandwidths overlap with envelope
bandwidths. This may arise, e.g., when a cortical cell partici-
pating in narrowband rhythmic activity generates envelope
power and simultaneously tries to detect a low-frequency
stimulus. In this context, envelope extraction from this nar-
rowband activity is detrimental. We go on to show how a
neuron population can overcome the “noisy background”
caused by the extracted envelope. It can transmit low-
frequency signals in the envelope bandwidth all the while
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responding coherently to the narrowband input. This en-
hancement of transmission, a new form of noise shaping,
paradoxically arises from the addition of intrinsic uncorre-
lated noise in all neurons, with subsequent population aver-
aging. This is in contrast to previous mechanisms involving
reciprocal feedback in a network [16] or single cell negative
interspike interval correlations [17]. Our results show how
threshold nonlinearity and noise can gate the transmission of
envelope power.

The model neuron used in this study is the leaky
integrate-and-fire (LIF) neuron [18], with dynamics,
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where v is the frans-membrane voltage, 7 is the membrane
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FIG. 1. A narrowband signal drives the input bias to a neuron
near theobase. The FI curve acts as a static transfer function, map-
ping the signal to a time-varying firing rate. Under these conditions,
the output firing rate is a rectified version of the input (upper right).
Also, the spectral power of this rate (bottom right) contains the
same narrowband frequencies as the input, as well as the low fre-
quencies of the slow time-varying envelope of this input. This en-
velope is seen here using a running average of the output rate over
the fast time scale (thick line, upper right-hand panel).
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time constant, / is the stationary input bias, and S(¢) is an
input signal. The intrinsic membrane noise, &(z), is a Gauss-
ian white noise process, i.e., (£(r)&(t"))=8(t—t"), with inten-
sity D. This dynamics is supplemented with absorbing and
reset boundaries at vy and vg, respectively. The times at
which the voltage process is absorbed and reset represent
spike times. The output spike train response R(f) is repre-
sented by a sequence of Dirac delta functions at these times.
For all following results, S(7) is a narrowband Gaussian pro-
cess with power in the 40—60 Hz range, and E(7) is its low-
frequency, time varying envelope. For comparison of the sig-
nal envelope E(r) with the response R(f), we need a
nonlinear transformation to compute E(z). This is done by
taking the time-varying amplitude of the analytic signal via
the Hilbert transform [19] which, in this case, yields an en-
velope signal with power in the 0—20 Hz range. The station-
ary mean rate of firing for the noisy LIF is given by [20]
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Below we will need the stationary rate as a function of input
bias, ro(I), also known as the frequency-input (FI) curve.

In general, the nonlinear transfer function of any system
has the ability to output low-frequency power associated
with low-frequency modulations of a high-frequency carrier
input [14,15]. The role of the FI curve as a sufficient nonlin-
earity to produce low-frequency envelope power in neural
output is illustrated in Fig. 1. If a narrowband, time-varying
input has its mean centered near rheobase (the input bias at
which the neuron begins firing), the output firing rate will be
a rectified version of the input, with slower dc offsets pro-
portional to the time-varying envelope (Fig. 1, thick line,
upper right-hand panel). The bottom right-hand panel of Fig.
1 shows the output represented in the frequency domain,
with power in the bandwidth of the input signal as well as
power in the lower frequency range associated with the
slower time scale of the envelope.

The results of Fig. 1 suggest that the FI curve is a good
approximate descriptor of the input-output transfer function
of the neuron. This is particularly true in the context where
the output firing rate tracks the input signal, i.e., rate-coding
occurs. Henceforth, we refer to this descriptor as the “rate
transfer model.” This is also the primary ansatz of linear
response theory in spiking neural models [21,22]. Except for
comparison with experiments, this model will be kept in
nondimensionalized form, apart for the time constant, 7
=10 ms, which falls in the range of experimentally measured
membrane time constants, and sets the firing frequency scale.

The measure of linear signal transfer we use between the
input signal, S(7), and the response, R(r), is the frequency-
dependent  coherence,  Cgr(f)=|Ssr(f)|*/[Sss(f)Srr(H)].
Ssr(f) is the cross-spectral density between the signal and
the spike train response, and Sgg(f) and Sgr(f) are the au-
tospectral densities of the signal and response, respectively.
The coherence function can obtain values between 0 and 1.

The rate transfer model predicts that the response is more
coherent with the envelope (i.e., a higher Cggr) when the
average bias is near the rheobase [i.e., near /=0.1 in Eq. (1)].
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FIG. 2. (a) Comparison of coherences predicted by the rate
transfer model [Eq. (2)] and by numerical simulation of Eq. (1). The
solid line and filled circles show the coherence between a
40-60 Hz Gaussian signal and the output spike trains (SR coher-
ence), as a function of input bias; the coherence is averaged over
40-60 Hz for each bias. The dashed line and open circles show
coherence between the envelope of the same signal and the spike
trains (ER coherence), averaged over the 0—20 Hz range of the
envelope power. The noise intensity used is D=5 X 107*. (b) Com-
parison of coherences between a 40—60 Hz Gaussian signal and the
output spike trains of pyramidal cells in vitro and of simulated LIF
neurons using Eq. (1) with the same parameters used in (a). Prepa-
ration of ELL slices and electrophysiology techniques were as in
Ref. [23]. Experimental protocols were approved by the University
of Ottawa Animal Care Committee.

Paradoxically, this enhanced linear coherence is a result of
the threshold nonlinearity. We now wish to compare the out-
put from Eq. (2) to the output from simulated neurons using
Eq. (1). The I in Eq. (2) is replaced by I+aS(z), where a is a
frequency-independent scaling parameter fitted to match
model FI and coherence to those of the simulated neuron.
This simple scaling, akin to an average susceptibility over
the input bandwidth, is sufficient here instead of the
frequency-dependent susceptibility [22], provided that the
stimulus bandwidth is narrow enough.

Figure 2(a) compares Cggr(f) and Cgr(f) calculated from
the firing rate model (filled and open circles, respectively)
and from numerical simulations of the LIF neuron (solid and
dashed lines, respectively). For the rate transfer function
model, two free parameters were used to account for the
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background noise power in the 0—20 Hz and 40-60 Hz
bandwidths expected for spike trains from a spontaneously
firing neuron. These parameters were added to the output
power of the rate transfer model in those bandwidths. Cgg(f)
increases with input bias and saturates for input biases cor-
responding to very high firing rates as a consequence of the
general dependence of information transfer on firing rate
[24]. Cggr(f) increases with bias near the rheobase (/=0.1),
but decreases for higher biases where the FI curve is more
linear.

Next, we show that, qualitatively, the same dependence of
Csr(f) and Cggr(f) on input bias occurs in real neurons. Fig-
ure 2(b) compares a numerical simulation of the LIF model
neuron and an in vitro recording made from a sample pyra-
midal cell. The input bias range for the model neuron was
shifted and rescaled in units of (nA) to match firing rates for
the range of injected currents (not shown). This same quali-
tative result was found in a total of N=9 cells. It has been
previously shown that LIF neuron models can effectively
reproduce first order firing statistics of real neurons, and also
good qualitative fit to second order statistics with parameters
fit to first order statistics [25]. We also find good agreement
between real and simulated neurons using coherence as a
higher order statistic. The real neurons show the predicted
dependence of coherence on input current-saturation of
Csr(f), and a nonmonotonic dependence for Cgr(f). Higher
input currents bring on a more linear regime and thus Cgg(f)
drops. Together, these results confirm the validity of the rate
transfer model in describing the response of LIF neurons or
real neurons to narrowband signals, and highlights the differ-
ences in the dependencies of Cgg(f) and Cgg(f) on bias.

The previous results were obtained in scenarios with rela-
tively low levels of intrinsic noise. By and large, intrinsic
membrane noise has a deleterious effect on the extraction
and transmission of the signal envelope. Figure 3(a) shows
the average Cggr(f) as a function of mean input current from
the rate transfer model for different values of noise intensity,
D. The peak of Cgr(f) decreases at least threefold as the
noise increases over three orders of magnitude. The main
effect of intrinsic noise is to wash out (i.e., linearize) the
effective current threshold responsible for rectifying the in-
put signal [20].

Figure 3(b) shows the effect of intrinsic noise on the
power spectrum of a simulated spike train from a single neu-
ron [Eq. (1)]. When intrinsic membrane noise is increased
from D=0.005 to D=0.5 the entire broadband spectrum in-
creases. The shape of the power spectrum is changed as well:
the narrowband power at envelope frequencies (0—20 Hz)
and higher harmonics of the fundamental frequency range
are washed out relative to the background. We may then ask:
What effect does this noise-dependent spectral shaping have
on signal transmission in neurons driven by narrowband
rhythms? In particular, since more noise washes out the
power at envelope frequencies (relative to the background),
can the system now better detect additional signals at these
envelope frequencies—especially given that the total back-
ground noise power increases? The answer is relevant to
neurons in different cortical areas that are subject to large
spatial scale narrowband rhythms; these rhythms do not cor-
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FIG. 3. The effects of noise intensity D in Eq. (1) on spike train
envelope power. (a) The averaged values of Cgg(f) as a function of
input current, for different values of D in the rate transfer model of
Eq. (2). (b) Ensemble averaged power spectra of the spike train of a
simulated neuron, Eq. (1) with 40—60 Hz Gaussian input for a low
and a high noise intensity, with /=0.1 and 7=10 ms.

respond to sensory stimuli but are often related to other tasks
such as directing attention [12,13,26]. In this scenario, low-
frequency envelope power would interfere with other signals
being transmitted in the same envelope bandwidth. The ad-
dition of noise to a single cell removes the envelope power
by linearizing the FI curve, but in doing so adds extra broad-
band power [Fig. 3(b)].

A solution to this problem involves averaging as follows.
If the spike trains from a population of N identical neurons
with independent intrinsic noises are averaged, the extra
broadband power can be reduced as it varies as 1/N. Figure
4(a) (inset, dashed, D=0.5) shows the power spectrum of the
average spike train in a population of N=50 simulated neu-
rons, displaying reduced envelope power relative to the
power in the narrowband range (40—60 Hz). In the low noise
case, the envelope component, common to all neurons, can-
not be effectively averaged out [Fig. 4(a), inset, solid, D
=0.005], unlike the intrinsic white noise, independent be-
tween all neurons. The arrows in Fig. 4(a) indicate the back-
ground noise levels (“noise floor”) on top of which harmonic
signal power is transmitted. This form of noise shaping dif-
fers from simply averaging out deleterious noise: it relies on
a noise-mediated linearization of the signal transfer. The en-
velope signal, common to all neurons, is removed by the
linearization and then the additional linearizing noise is av-
eraged out. Thus noise may act as a gate of linear vs nonlin-
ear information in the brain.
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FIG. 4. Network averaging of spike trains R(t):E;V:le(t)/N
from independent noisy neurons shapes the average spike train
power spectrum. (a) The power spectral density of the average spike
train R(r) with N=50 identical LIF neurons with independent un-
correlated noise for D=0.005 (dashed line) and D=0.5 (solid line).
The noise floor (indicated by arrows) is paradoxically reduced with
the addition of intrinsic noise, so that the power of a small ampli-
tude, low-frequency (f=10) harmonic input is more visible. The
inset shows the effect of noise on the full spectrum in the absence of
a low-frequency, harmonic input. (b) The SNR of the averaged
spike train R(z) with respect to this low-frequency harmonic input
shows a nonmonotonic behavior as a function D (solid line). A
noise-dependent rheobase shift predicts the behavior of the SNR for
low to moderate noise intensities (circles). The arrows indicate the
SNR for noise values used in (a).

Figure 4(b) shows the effects of this form of noise shap-
ing (noise floor changes) on low-frequency signal transmis-
sion. When the small amplitude sinusoidal input [shown in
Fig. 4(a)], with frequency f, in the envelope bandwidth, is
added, the signal-to-noise ratio {SNR=1lim._,2S(f,)/[S(f,
—€)+S(f,+¢€)]} depends on D. The SNR with respect to this
harmonic signal increases with D up to a point, and then
decreases when the single cells can no longer respond coher-
ently in the presence of high noise. The increase in SNR can
be modeled by considering that the envelope power is ex-
tracted from rectification by the FI rate transfer model in Eq.
(2). A general, biased rectifying device results in total enve-
lope power proportional to A2—B? where A? is the signal
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variance and B is the rectifying bias [14], which is the dif-
ference between the mean of the input signal, /, and the
threshold (B=0 thus corresponding to half-wave rectifica-
tion). Increasing noise has the effect of shifting the threshold
(rheobase in our case) leftwards.

With this in mind, we can make a first-order approxima-
tion that increasing the noise shifts the rectifying bias, i.e.,
Bxk—D where k is an arbitrary constant. A small noise ex-
pansion of the SNR gives a second-order polynomial, SNR
~a-bD+cD?. The resulting formula was fit (circles) to the
numerical simulation results (solid lines) in Fig. 4(b),
thereby showing that a noise-induced rheobase shift is re-
sponsible for the low to moderate noise behavior of the SNR
in our averaging network. Even though classic stochastic
resonance (SR, i.e., the matching of noise induced threshold
crossing times with stimulus period) is possible in this model
neuron, namely for very low mean input bias [see Fig. 3(a)],
it does not play a role in this noise shaping, since the bias I
used for Figs. 3 and 4 is not subthreshold. This effect also
differs from superthreshold stochastic resonance (SSR) [27].
In SSR the addition of noise increases the SNR by increasing
the effective sampling rate of a high-frequency signal. Here
we remove extra “background” low-frequency power, by lin-
earizing and then averaging, thus increasing SNR.

In summary, we have examined the nature of envelope
extraction in biophysical spiking neurons and confirmed the
validity of the underlying mechanism in pyramidal cell re-
cordings in vitro. The envelope-response coherence, Cgr(f),
shows a strong dependence on average current inputs as well
as on intrinsic membrane noise. This mechanism could play
a role in gating the flow of envelope information in sensory
systems where the envelope represents a pertinent cue
[9,10,28]. Also, our results lead us to hypothesize that a form
of noise shaping can occur which enables gating of different
kinds of information through the same physical channel (i.e.,
single neurons), depending on the context. This can take
place, e.g., in cortical areas, where macroscopic rhythms
[11-13,26] and neurons with high degrees of variability [29]
are found. This noise shaping is mediated by an increase in
intrinsic noise as opposed to network connectivity [16] or
intrinsic single cell temporal correlations [17]. Experimental
validation of this hypothesis may be difficult in vivo, al-
though we predict this noise shaping could be observed in
iterated network experiments [30] in vivo. The envelope re-
sponse described here is a generic property of a single
threshold and/or excitable system; this further implies that
this form of noise shaping will be a generic property of ar-
rays of such systems.
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